Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Pollut ; 342: 123055, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065334

RESUMO

Heavy metal (HM) leaching from tungsten mine tailings is a serious environmental risk. In this study, we assess the HM pollution level of tungsten tailings, determine the HM leaching patterns and mechanisms, and estimate the HM fluxes from a tailings reservoir. The results showed that the comprehensive pollution index (CRSi) values that decreased in order of the HM pollution levels in the tailings were cadmium (Cd) > tungsten (W) > lead (Pb) > copper (Cu) = zinc (Zn) > arsenic (As) > manganese (Mn). This result indicated that Cd, W, and Pb were priority pollutants in tailings. The Res fraction of all HMs was greater than 50%. Pb and Cd had similar species fractions with high Exc fractions, and tungsten had a considerable proportion of the Wat fraction. The general acid neutralizing capacity (GANC) test divides the leaching process of HMs into two stages, and each of stage is affected by different mechanisms. A neutral environment promoted tungsten leaching in the column leching test, while an acidic environment promoted Cd and Pb leaching. In addition, the pH effect was more obvious in the early stage. The kinetic fitting results showed that the second-order dynamic model well simulated the leaching of W, Pb, and Cd in most cases. Based on column kinetic leaching test results and tailings parameters, the annual W, Pb, and Cd fluxes were estimated to be 6.35 × 108, 1.3288 × 109, and 1.012 × 108 mg/year, respectively. The above results can guide the environmental management of tungsten tailing reservoirs, such as selecting suitable repair materials and estimating repair service times.


Assuntos
Metais Pesados , Poluentes do Solo , Tungstênio , Cádmio , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Mineração , Monitoramento Ambiental/métodos
2.
Environ Pollut ; 343: 123273, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160771

RESUMO

Studies of recovery from acidic deposition have focused on reversal of acidification and its associated effects, but as recovery proceeds slowly, chemical dilution of surface waters is emerging as a key factor in the recovery process that has significant chemical and biological implications. This investigation uses long-term chemical records from 130 streams in the Adirondack region of New York, USA, to evaluate the role of ongoing decreases in conductance, an index of dilution, in the recovery of these streams. Stream chemistry data spanning up to 40 years (1980s-2022) showed that acid-neutralizing capacity has increased in 92% of randomly selected streams, but that harmful levels of acidification still occur in 37% of these streams. Conductance and Ca2+ concentrations decreased in 79% of streams, and SO42- concentrations in streams continued to show strong decreases but remained several times higher than concentrations in precipitation. These changes were ongoing through 2022 even though acidic deposition levels were approaching those estimated for pre-industrialization. Further dilution is continuing through ongoing decreases in stream SO42-. Nevertheless, Ca2+ continued to be leached from soils by SO42-, organic acids and NO3-, limiting the replenishment of available soil Ca2+, a prerequisite to stem further dilution of stream water.


Assuntos
Água Doce , Rios , Concentração de Íons de Hidrogênio , Água , Compostos Orgânicos , Ácidos , Solo , Monitoramento Ambiental
3.
Materials (Basel) ; 15(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556591

RESUMO

The influence of structural features of three serpentine-group minerals (antigorite, chrysotile, and lizardite) on the hydration of heat-treated materials and the formation of magnesium silicate binder has been studied. Initial serpentine samples have been fired in the interval 550-800 °C with a step of 50 °C; acid neutralization capacity (ANC) values have been determined for all samples. Antigorite samples (SAP) have exhibited a maximum reactivity at a temperature of 700 °C (ANC 7.7 meq/g). We have established that the acid-neutralizing capacity of chrysotile and lizardite samples in the temperature range of 650-700 °C differ slightly; the capacity varied in the interval of 19.6-19.7 meq/g and 19.6-19.7 meq/g, respectively. The samples obtained at optimal temperatures (antigorite-700 °C, lizardite, and chrysotile-650 °C) have been studied. Heat-treated serpentines have interacted with water vapor for a year; serpentine hydration has been investigated. The strength characteristics of the resulting binder agents were studied after 7, 28, 180, and 360 days. Upon hardening within 7 days, the strengths of the SAP and SCH samples have been almost the same (2.2 MPa), whereas this indicator for the SLH and SLK samples has been significantly lower (0.5 MPa). After hardening for over a year, the chrysotile sample SCH had the highest strength (about 8 MPa), whereas the strength of antigorite SAP was 3 MPa. The samples of initial, heat-treated, and hydrated heat-treated serpentines have been studied using XRD, differential scanning calorimetry, and surface texture analysis. The serpentine structure is crucial in destroying the mineral crystal lattice during heat treatment. In contrast to heat-treated chrysotile and lizardite, antigorite did not adsorb water. Structural features of chrysotile provided the highest compressive strength of the binding agent compared with antigorite and lizardite. The acid-neutralizing ability of lizardite was noticeably higher than antigorite, whereas its compressive strength was lower due to the layered mineral structure and impurities. We have established that the minerals' structural features are crucial for the hydration of heat-treated serpentines; the structure determines material utilization in various environmental technologies.

4.
Chemosphere ; 302: 134856, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35533944

RESUMO

Tungsten ore processing residue (TOPR) poses a potential risk due to tungsten (W) leaching. However, the leachability of W in TOPR is not well understood. Herein, the mechanism of W leachability from TOPR was investigated using complementary characterization techniques and leaching experiments. Our X-ray absorption near edge structure (XANES) analysis resolved wolframite in TOPR with a distorted octahedral coordination. The sequential extraction procedure showed that 78% of mobile fraction W in TOPR were bound to Fe oxides, and consequently W leachability was positively correlated with dissolved Fe concentration as evidenced by the general acid neutralizing capacity (GANC) test. The GANC results showed that the W release was negatively correlated with Ca concentration due to CaWO4 precipitation. The in vitro gastrointestinal procedure (IVG) results indicated that organic acids, abundant in fruits and vegetables, significantly improved the bioaccessibility of W from 10% to 20% of total W in TOPR. As a consequence, accidental ingestion of TOPR with a chemical daily intake at 0.8 mg kg-1 day-1 evidenced its emerging concern in the environment and human health.


Assuntos
Poluentes do Solo , Tungstênio , Humanos , Óxidos/química , Poluentes do Solo/análise , Tungstênio/análise
5.
Sci Total Environ ; 800: 149626, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426327

RESUMO

Modeling studies project that in the future surface waters in the northeast US will continue to recover from acidification over decades following reductions in atmospheric sulfur dioxide and nitrogen oxides emissions. However, these studies generally assume stationary climatic conditions over the simulation period and ignore the linkages between soil and surface water recovery from acid deposition and changing climate, despite fundamental impacts to watershed processes and comparable time scales for both phenomena. In this study, the integrated biogeochemical model PnET-BGC was applied to two montane forest watersheds in the Adirondack region of New York, USA to evaluate the recovery of surface waters from historical acidification in response to possible future changes in climate and atmospheric sulfur and nitrogen deposition. Statistically downscaled climate scenarios on average project warmer temperatures and greater precipitation for the Adirondack by the end of the century. Model simulations suggest under constant climate, acid-sensitive Buck Creek would gain 12.8 µeq L-1 of acid neutralizing capacity (ANC) by 2100 from large reductions in deposition, whereas acid insensitive Archer Creek is projected to gain 7.9 µeq L-1 of ANC. However, climate change could limit those improvements in acid-base status. Under climate change, a negative offset relative to the ANC increases with no climate change are projected for both streams by 2100. In acid-insensitive Archer Creek the negative offset (-8.5 µeq L-1) was large enough that ANC is projected to decrease by -0.6 µeq L-1, whereas in acid-sensitive Buck Creek, the negative offset (-0.4 µeq L-1) resulted in a slight decline of the projected future ANC increase to 12.4 µeq L-1. Calculated target loads for 2150 for both sites decreased when future climate change was considered in model simulations, which suggests further reductions in acid deposition may be necessary to restore ecosystem structure and function under a changing climate.


Assuntos
Chuva Ácida , Rios , Chuva Ácida/análise , Mudança Climática , Ecossistema , Monitoramento Ambiental , New York , Nitrogênio , Enxofre/análise
6.
J Environ Manage ; 270: 110818, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32507739

RESUMO

Conventional wastewater treatment plants remove phosphorus, which is captured in sewage sludge. Increasing attention is paid to suitable process pathways that allow recovery and recycling of phosphorus. One of the processes under investigation is acid leaching and recovery of phosphorus, but this requires considerable chemical additives, which could be avoided by stimulating acidification via microbiological processes. This study investigated phosphorus leaching from sewage sludge by biogenic sulfuric acid, using Acidithiobacillus thiooxidans. Sulfur supplementation and solid to liquid ratio were varied to examine how these factors affected phosphorus leaching yield. Chemical leaching by sulfuric acid from sewage sludge and thermally-treated sludge was conducted to compare with bioleaching from sewage sludge. Sewage sludge samples were collected from wastewater treatment plants in Ghent, Belgium, and Delft, The Netherlands. Both bioleaching and chemical leaching were conducted at laboratory scale using shake flask technique, and highest phosphorus leaching yield and time was determined using one-way ANOVA statistical tests. Biogenic sulfuric acid produced by A. thiooxidans extracted phosphorus from both sludge samples. The highest phosphorus leaching yield observed was 48 ± 0% for 17 days from Ghent samples and 57 ± 4% for 27 days from Delft samples with 5.0% (w/v) sulfur supplementation and 1.0% (w/v) solid to liquid ratio. Chemical leaching took shorter than bioleaching, but the leaching yield was lower, i.e. 41 ± 1% for 4 h from Ghent samples, 44 ± 1% for 1 h from Delft samples, 48 ± 1% for 1 h from thermally-treated Ghent samples and 51 ± 2% for 4 h from thermally-treated Delft samples. During phosphorus bioleaching, pH increase was observed during the early stage which hampered the activity of A. thiooxidans and therefore increased phosphorus leaching time. This study suggests that creating conditions for A. thiooxidans to overcome acid neutralizing capacity of sewage sludge is needed to extract phosphorus effectively.


Assuntos
Acidithiobacillus , Metais Pesados , Acidithiobacillus thiooxidans , Bélgica , Concentração de Íons de Hidrogênio , Países Baixos , Fósforo , Esgotos , Águas Residuárias
7.
Sci Total Environ ; 716: 137113, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059317

RESUMO

The present-day acid-base chemistry of surface waters can be directly linked to contemporary observations of acid deposition; however, pre-industrial conditions are key to predicting the potential future recovery of stream ecosystems under decreasing loads of atmospheric sulfur (S) and nitrogen (N) deposition. The integrated biogeochemical model PnET-BGC was applied to 25 forest watersheds that represent a range of acid sensitivity in the Adirondack region of New York, USA to simulate the response of streams to past and future changes in atmospheric S and N deposition, and calculate the target loads of acidity for protecting and restoring stream water quality and ecosystem health. Using measured data, the model was calibrated and applied to simulate soil and stream chemistry at all study sites. Model hindcasts indicate that historically stream water chemistry in the Adirondacks was variable, but inherently sensitive to acid deposition. The median model-simulated acid neutralizing capacity (ANC) of the streams was projected to be 55 µeq L-1 before the advent of anthropogenic acid deposition (~1850), decreasing to minimum values of 10 µeq L-1 around the year 2000. The median simulated ANC increased to 13 µeq L-1 by 2015 in response to decreases in acid deposition that have occurred over recent decades. Model projections suggest that simultaneous decreases in sulfate, nitrate and ammonium deposition are more effective in restoring stream ANC than individual decreases in sulfur or nitrogen deposition. However, the increases in stream ANC per unit equivalent decrease in S deposition is greater compared to decreases in N deposition. Using empirical algorithms, fish community density and biomass are projected to increase under several deposition-control scenarios that coincide with increases in stream ANC. Model projections suggest that even under the most aggressive deposition-reduction scenarios, stream chemistry and fisheries will not fully recover from historical acidification by 2200.

8.
Environ Sci Pollut Res Int ; 26(35): 35588-35601, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30903478

RESUMO

Passive systems are often used for the treatment of acid mine drainage (AMD) on closed and abandoned mine sites. Metal-rich residues (solid precipitates) with variable chemical composition and physical properties can be generated. Their characterization is required to better anticipate the potential fate, including stability for disposal, potential recovery, or reuse. The present study evaluated the leaching potential of solids from a laboratory passive multi-step treatment for Fe-rich AMD (2350 ± 330 mg/L Fetot, 0.7 ± 0.4 mg/L Ni, 0.2 ± 3.0 mg/L Zn, and 5073 ± 407 mg/L SO42-, at pH 3.04 ± 0.45). To do so, post-treatment solids from three units (Fe-pretreatment reactor (50% wood chips and 50% wood ash, WA50), passive biochemical reactor, PBR for SO42- treatment (30% inorganic materials, 70% organic substrate), and polishing reactor (50% calcite and 50% wood chips, C50)) of a pilot laboratory treatment system were sampled. Physicochemical and mineralogical characterization, as well as static leaching tests were then performed. Results showed that all solids had high neutralizing potential, while high inorganic carbon was found in C50. Moreover, high metal concentrations were found in WA50. Metals and sulfates in all solids precipitated in the form of oxyhydroxides, oxy-hydroxy-sulfates, carbonates, sulfides, sulfate, and native sulfur. The Fe was not found as problematic contaminant in solids, but it was in AMD. However, a probable generation of contaminated neutral drainage by Ni and Zn could occur from WA50. The C50 had the highest acid neutralizing capacity and could better resist to acid aggression relative to solids from PBR and WA50. The PBR and C50 solids were considered as non-hazardous towards regulation's limits and a potential co-disposal with municipal wastes could be a storage option. Further studies should be undertaken by testing other leaching and kinetic tests to assess long-term metal stability.


Assuntos
Metais/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Ácidos , Carbonato de Cálcio , Carbono , Carbonatos , Mineração , Sulfatos , Sulfetos/química
9.
Ecology ; 98(8): 2224, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28763582

RESUMO

The Hubbard Brook Ecosystem Study officially began on 1 June 1963. This archive contains the results of 50 yr of collection and analysis of (at least) weekly stream water and precipitation samples obtained during the period 1963-2014 (from 1 June 1963 to 30 May 2013). Stream chemistry for the nine gauged watersheds and precipitation chemistry for precipitation gauges distributed throughout the Hubbard Brook Experimental Forest are reported as concentrations in (mg/L).


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Rios/química , Poluição da Água/estatística & dados numéricos , Florestas , Árvores
10.
J Environ Manage ; 201: 207-214, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666197

RESUMO

At the Kidston gold mine, Australia, the direct establishment of vegetation on tailings was considered as an alternative to the use of a waste rock cover. The tailings acid/base account was used to predict plant growth limitation by acidity, and thus methods capable of identifying tailings that would acidify to pH 4.5 or lower were sought. Total S was found to be poorly correlated with acid-generating sulfide, and total C was poorly correlated with acid-neutralizing carbonate, precluding the use of readily determined total S and C as predictors of net acid generation. Therefore, the selected approach used assessment of sulfide content as a predictor of acid generation, and carbonate content as a measure of the acid-neutralizing capacity available at pH 5 and above. Using this approach, the majority of tailings (67%) were found to be non-acid generating. However, areas of potentially acid-generating tailings were randomly distributed across the dam, and could only be located by intensive sampling. The limitations imposed by the large sample numbers, and costly analysis of sulfide and carbonate, make it impractical to identify and ameliorate acid-generating areas prior to vegetation establishment. However, as only a small proportion of the tailings will acidify, a strategy of re-treating acid areas following oxidation is suggested. The findings of the present study will assist in the selection of appropriate methods for the prediction of net acid generation, particularly where more conservative measurements are required to allow vegetation to be established directly in tailings.


Assuntos
Mineração , Desenvolvimento Vegetal , Austrália , Carbonatos , Oxirredução , Poluentes do Solo
11.
Sci Total Environ ; 563-564: 1068-77, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185346

RESUMO

Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future.


Assuntos
Florestas , Poluentes do Solo/química , Solo/química , China , Concentração de Íons de Hidrogênio , Árvores
12.
Sci Total Environ ; 511: 186-94, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25544337

RESUMO

Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO4(2-))+nitrate (NO3-) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO4(2-)+NO3-, calcium (Ca2+) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3+ concentrations since the onset of acidic deposition were also related to Ca2+ weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future.


Assuntos
Chuva Ácida/estatística & dados numéricos , Monitoramento Ambiental , Lagos/química , Animais , Biodiversidade , Ecossistema , Peixes/classificação , Peixes/crescimento & desenvolvimento , New York , Nitratos/análise , Sulfatos/análise , Poluentes Químicos da Água/análise , Zooplâncton/classificação , Zooplâncton/crescimento & desenvolvimento
13.
Sci Total Environ ; 494-495: 187-201, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25046610

RESUMO

Forest biofuel is a main provider of energy in Sweden and the market is expected to grow even further in the future. Removal of logging residues via harvest can lead to short-term acidification but the long-term effects are largely unknown. The objectives of this study were to 1) model the long-term effect of whole-tree harvest (WTH) on soil and stream water acidity and 2) perform sensitivity analyses by varying the amounts of logging residues, calcium (Ca(2+)) concentrations in tree biomass and site productivity in nine alternate scenarios. Data from three Swedish forested catchments and the Model of Acidification of Groundwater in Catchments (MAGIC) were used to simulate changes in forest soil exchangeable Ca(2+) pools and stream water acid neutralizing capacity (ANC) at Gammtratten, Kindla and Aneboda. Large depletions in soil Ca(2+) supply and a reversal of the positive trend in stream ANC were predicted for all three sites after WTH. However, the magnitude of impact on stream ANC varied depending on site and the concentration of mobile strong acid anions. Contrary to common beliefs, the largest decrease in modelled ANC was observed at the well-buffered site Gammtratten. The effects at Kindla and Aneboda were much more limited and not large enough to offset the general recovery from acidification. Varying the tree biomass Ca(2+) concentrations exerted the largest impact on modelled outcome. Site productivity was the second most important variable whereas changing biomass amounts left on site only marginally affected the results. The outcome from the sensitivity analyses pointed in the same direction of change as in the base scenario, except for Kindla where soil Ca(2+) pools were predicted to be replenished under a given set of input data. The reliability of modelled outcome would increase by using site-specific Ca(2+) concentrations in tree biomass and field determined identification of site productivity.

14.
Glob Chang Biol ; 20(12): 3790-801, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24953639

RESUMO

Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening ecosystem health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long-term N deposition on soil acidification processes in tropical forests. We have established a long-term N-deposition experiment in an N-rich lowland tropical forest of Southern China since 2002 with N addition as NH4 NO3 of 0, 50, 100 and 150 kg N ha(-1)  yr(-1) . We measured soil acidification status and element leaching in soil drainage solution after 6-year N addition. Results showed that our study site has been experiencing serious soil acidification and was quite acid-sensitive showing high acidification (pH(H2O) <4.0), negative water-extracted acid neutralizing capacity (ANC) and low base saturation (BS,< 8%) throughout soil profiles. Long-term N addition significantly accelerated soil acidification, leading to depleted base cations and decreased BS, and further lowered ANC. However, N addition did not alter exchangeable Al(3+) , but increased cation exchange capacity (CEC). Nitrogen addition-induced increase in SOC is suggested to contribute to both higher CEC and lower pH. We further found that increased N addition greatly decreased soil solution pH at 20 cm depth, but not at 40 cm. Furthermore, there was no evidence that Al(3+) was leaching out from the deeper soils. These unique responses in tropical climate likely resulted from: exchangeable H(+) dominating changes of soil cation pool, an exhausted base cation pool, N-addition stimulating SOC production, and N saturation. Our results suggest that long-term N addition can contribute measurably to soil acidification, and that shortage of Ca and Mg should receive more attention than soil exchangeable Al in tropical forests with elevated N deposition in the future.


Assuntos
Ecossistema , Poluentes Ambientais/análise , Modelos Teóricos , Nitratos/análise , Solo/química , Análise de Variância , China , Poluentes Ambientais/metabolismo , Concentração de Íons de Hidrogênio , Modelos Lineares , Nitratos/metabolismo , Clima Tropical
15.
Artigo em Português | LILACS | ID: lil-535417

RESUMO

Neste estudo buscou-se desenvolver formulações de comprimidos tamponados mastigáveis (CTM) de didanosina com eficiência de dissolução (ED%) e capacidade neutralizante ácida (CNA) otimizados, tendo como base o medicamento referência e especialidades farmacêuticas disponíveis no mercado nacional. Cinco formulações de CTM foram produzidas e avaliadas quanto a ED% e CNA, por meio de ensaio de dissolução e titulação ácido-base, respectivamente. Os resultados iniciais de CNA foram próximos aos encontrados para as especialidades farmacêuticas, aproximadamente 12 mEq HCl, porém distantes do medicamento referência (especialidade A, CNA = 17,93 mEq HCl). Já as formulações derivadas de CTM-4 conduziram à obtenção de comprimidos tamponados com CNA otimizada de aproximadamente 17,5 mEq HCl, o mesmo ocorrendo para ED%, (61,33% e 62,00%, CTM-4-2-1 e3, respectivamente). Esse resultado mostra-se próximo ao valor de 59,33% da especialidade A, quando utilizado o mesmo método de dissolução, indicando haver equivalência entre estas formulações e o medicamento referência para estes parâmetros.


The aim in this study was to develop chewable buffered tablets (CBT) of didanosine with optimized dissolution efficiency (DE) and acid-neutralizing capacity (ANC), using the reference medicine and other pharmaceutical didanosine products available in Brazil as models. Five CBT formulations were prepared and assessed for DE and ANC, through the dissolution test and acid-base titration, respectively. The initial ANC results fell short of those for the reference medicine (product A, ANC= 17.93 mEq HCl), but were close to those obtained for other pharmaceutical products (approximately 12 mEq HCl). The formulations derived from CBT-4 resulted in buffered tablets with an optimized ANC of 17.5 mEq HCl, approximately. The same was found for DE (61.33% and 62.00%, CBT-4-2-1 and CBT 3, respectively). This result proved to be close to that of product A (59.33%), when the same method was used for the dissolution test, indicating that both formulations and the reference medicine were equivalent with respect to these properties.


Assuntos
Química Farmacêutica , Dissolução , Didanosina/farmacocinética , Preparações Farmacêuticas , Comprimidos com Revestimento Entérico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...